University of Minnesota
University of Minnesota
http://www.umn.edu/
612-625-5000
Home
Make a Gift
VHLabs
 
HeartDatabase
 
Right Atrium
Right Ventricle
Pulmonary Trunk
Left Atrium
Left Ventricle
Aorta
Coronary Arteries
Cardiac Veins
External Images
MRI Images
Comparative Imaging
3D Modeling
Plastinates
 
Anatomy Tutorial
Cardiovascular Magnetic Resonance Tutorial
Comparative Anatomy Tutorial
Conduction System Tutorial
Congenital Defects Tutorial
Coronary System Tutorial
Device Tutorial
Echocardiography Tutorial
Physiology Tutorial
 
Project Methodologies
Cardiovascular Devices and Techniques at U of Minnesota
Acknowledgements
References and Links
Atlas in the media
 
Surgery Department
Principal
 
 
 
3D Modeling
Coronary Vasculature Models Tissue Models Blood Volume Models Congenital Defect Models Device Models

3D modeling of the cardiac anatomies is useful for enhancing ones understanding of the variations that may occur relative to an individual patient and/or disease state. Such models have been used to advance the anatomical understandings of medical students, residents, physicians, and/or cardiac device designers. For example, modeling in combination with clinical imaging can provide surgeons with physical representations of the patient's anatomy with which to plan complex surgeries.

Our lab has created a database of 3D models by reconstructing anatomies from magnetic resonance (MRI) and/or computed tomography (CT) scans using Mimics Software (Materialise, Leuven, Belgium). First, individual MRI and CT scans are obtained using methods described in the Static Imaging Methodologies section of the website. A given scan is then uploaded to Mimics, where we segment out anatomies based on their Hounsfield thresholds. Hounsfield thresholds quantify the radiodensity of a given tissue and can be used to isolate and segment out a specific anatomy, such as the left ventricle or epicardial fat. We have used these models to measure various anatomical parameters including cardiac chamber volumes and coronary vasculature arc lengths, branching angles, tortuousities, and diameters. We will continue to build this database of measurements to be used for device design for a variety of patient populations.

Many of these specimens have been categorized by the progression of the cardiac disease state they exhibit, usually a form of chronic heart failure (CHF). CHF is generally defined as a degenerative cardiac pathology in which the heart cannot adequately pump blood to the rest of the body. Two of the most common forms of CHF are ventricular hypertrophy and ventricular dilation. The most common causes of ventricular hypertrophy, the thickening of the ventricular heart muscle, are coronary heart disease, high blood pressure and heart valve disorders. However, hypertrophy can be the result of a genetic cardiomyopathy whereby the heart muscle thickens over time. The causes of ventricular dilatation, often a result of a specific cardiomyopathy where the heart chamber enlarges and the heart walls stretch and thin reducing the organs ability to pump blood efficiently to the rest of the body, are not as well understood. In most cases dilated cardiomyopathy is attributed to genetic disorders, coronary heart disease, diabetes, thyroid disease, infections, and alcohol or drug abuse. Although the majority of the heart specimens in the Visible Heart® library are from patients with CHF, some hearts still exhibit anatomical dimensions that would normally be associated with a healthy individual. These specimens often display cardiac pathologies such as coronary artery disease, myocardial infarctions or valve disease yet have not remodeled in the degenerative fashion associated with CHF.

El modelamiento 3D de la anatomía cardíaca es útil para comprender las variaciones anatómicas que existen entre individuos y aquellas que ocurren secundarias a algunas patologías. Estos modelos se han utilizado para mejorar la comprensión de la anatomía cardiaca tanto por estudiantes de medicina, residentes, médicos y / o diseñadores de dispositivos cardíacos. Por ejemplo, el modelamiento en combinación con imágenes clínicas puede proporcionar a los cirujanos representaciones físicas de la anatomía del paciente con las que planar cirugías complejas.

Nuestro laboratorio ha creado una base de datos de modelos 3D mediante la reconstrucción anatómica a partir de resonancia magnética (RMN) y / o tomografía computarizada (TAC) utilizando el software Mimics (Materialise, Lovaina, Bélgica). En primer lugar, se obtienen resonancias magnéticas y tomografías computarizadas individuales utilizando los métodos descritos en la sección Metodologías de imágenes estáticas del sitio web. Luego, las imágenes se cargan en Mimics, donde segmentamos las anatomía en función de sus umbrales de Hounsfield. Los umbrales de Hounsfield cuantifican la radiodensidad de un tejido determinado y se pueden usar para aislar y segmentar una región anatómica específica, como el ventrículo izquierdo o la grasa epicárdica. Hemos utilizado estos modelos para medir varios parámetros anatómicos, incluidos los volúmenes de las cámaras cardíacas y las longitudes de los arcos de los casos coronarios, los ángulos de ramificación, las tortuosidades y los diámetros. Continuaremos construyendo esta base de datos que se utilizará para el diseño de dispositivos.

Muchos de estos modelos se han clasificado de acuerdo a las comorbilidades que presentan los pacientes, generalmente padecen de insuficiencia cardíaca crónica (ICC). La ICC se define generalmente como una patología cardíaca degenerativa en la que el corazón no puede bombear sangre de manera adecuada al resto del cuerpo. Dos de las formas más comunes de ICC son la hipertrofia ventricular y la dilatación ventricular. Las causas más comunes de hipertrofia ventricular (engrosamiento del músculo cardíaco ventricular) son la enfermedad coronaria, hipertensión arterial y los trastornos valvulares. Sin embargo, la hipertrofia puede ser el resultado de una miocardiopatía genética que resulta en un engrosamiento progresivo del músculo. Las causas de la dilatación ventricular ocurre cuando las cámaras del corazón se agrandan y las paredes del corazón se estiran y adelgazan, lo que reduce la capacidad del corazón para bombear sangre de manera eficiente al resto del cuerpo. En la mayoría de los casos, la miocardiopatía dilatada se atribuye a trastornos genéticos, enfermedad coronaria, diabetes, enfermedad de la tiroides, infecciones y abuso de alcohol o drogas. Aunque la mayoría de las muestras en la biblioteca Visible Heart® son de pacientes con insuficiencia cardiaca, algunos corazones presentan dimensiones en rangos de normalidad debido a que no sufrieron un remodelamiento y degeneración significativa. Estos modelos a menudo presentan patologías como enfermedad coronaria, infarto de miocardio o valvulopatías.

Download movie: mp4

This video shows a 3D reconstruction of Heart0130 created by Boston Scientific. The myocardium was reconstructed from MR images of the specimen while the coronary veins were reconstructed from contrast-CT images using Mimics software. The myocardium is in pink and the coronary veins are in blue.

The video starts with a 360 degree rotation of the reconstructed specimen. Next, the model is sliced by a short axis plane in the basal area of the ventricles. This allows for a view of the atrioventricular valves from below. The mitral valve is on the right of the video and the tricuspid is on the left. Then the heart model is sliced to provide a view all for chambers. The video zooms in for a closer look at the mitral valve and left ventricle and then pans to the tricuspid valve and right ventricle. Finally, the model is sliced by the small short axis basal plane and provides a view of the right and left ventricular apexes.

Este video muestra una reconstrucción 3D del corazón Heart0130 creada por Boston Scientific. El miocardio se reconstruyó a partir de imágenes de RMN, mientras que las venas coronarias se reconstruyeron a partir de imágenes de TAC contrastado utilizando el software Mimics. El miocardio se visualiza de color rosado y las venas coronarias azul.

El video comienza con una rotación de 360 grados del modelo reconstruido. A continuación, el modelo se corta en un plano donde se observa el eje corto en el área basal de los ventrículos. Esto permite visualizar desde abajo las válvulas auriculoventriculares. Luego, el modelo del corazón se corta para proporcionar una vista completa de las cámaras. El video se acerca para ver más de cerca la válvula mitral y el ventrículo izquierdo y luego se desplaza hacia la válvula tricúspide y el ventrículo derecho. Finalmente, el modelo se corta a través del eje corto a nivel basal y proporciona una vista de los vértices ventriculares derecho e izquierdo.

MaterialiseHighly accurate 3D-printed models of some of the heart models contained within the Atlas of Human Cardiac Anatomy can be ordered from Materialise.

 
 
© 2021 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. Privacy Statement